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I.   

As the students of the first two years of mathematical analysis well know, the 

Wronskian, Jacobian and Hessian  are the names of  three determinants and 

matrixes, which were invented in the nineteenth century, to make life easy to 

the mathematicians and to provide nightmares to the students of 

mathematics. 

 

II. 

I don’t know how the Hessian  came to the mind of  Ludwig Otto Hesse 

(1811-1874), a quiet professor father of nine children, who was born in 

Koenigsberg (I think that Koenigsberg gave birth to a disproportionate 

https://upload.wikimedia.org/wikipedia/commons/6/65/Ludwig_Otto_Hesse.jpg
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number of famous men). It is possible that he was studying the problem of 

finding maxima, minima and other anomalous points on a bi-dimensional 

surface.  (An alternative hypothesis will be presented  in section X. ) 

While pursuing such study, in one variable, one first looks for the points where 

the first derivative is zero (if it exists at all), and then examines the second 

derivative at each of those points, to find out its “quality”, whether it is a 

maximum, a minimum, or an inflection point.  The variety of anomalies on a 

bi-dimensional surface is larger than for a one dimensional line, and one 

needs to employ more powerful mathematical  instruments. Still, also in two 

dimensions one starts by looking for points where the two first partial 

derivatives, with respect to x and with respect to y respectively, exist and are 

both zero. A point on the surface where both first partial derivatives are zero 

is called a “critical point”. One must then investigate the nature of the critical 

points, whether they are maxima, minima, saddle points or anything else.  

 

III. 

To introduce  the concept of “Hessian” I will content myself with a heuristic 

approach through the Taylor expansion in two variables.  

In one variable, we know that  

                         
 

 
             … 

For our discussion of the “Hessian” we won’t need more that the second 

degree, and therefore we will stop there.  Of course the function we 

investigate may include higher degree powers of x and y, or even 

transcendent functions, but, as we do with functions of one variable, 

investigating the second derivative terms will be enough, in most situations. 

For completeness I will show here a heuristic, non-rigorous  

method to expand a function f(x)  in Taylor series. 

The polynomial (a constant) 



3 
 

             

has the same value as f(a), at the point a. We will now try to 

improve the polynomial in such a way that also its first 

derivative be equal to the first derivative of the function, still at 

the point  x=a. 

To obtain this result we add a first degree term  B( x – a) and 

determine the coefficient B by imposing that the first 

derivatives are equal:  

                    

From which: 

                  .  

We now want that also the second derivatives are equal at  x=a, 

and we must add a second degree term: 

                                  

Which entails,  

   
 
                   

Our polynomial is now  

                         
 

 
                 

We can continue adding terms of increasing degree. First we 

will obtain a term of the third degree, with  

    
 
                         

And then all the others, until infinity. We can also set       

  , from which 

x =       and in the end : 
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The strictness of such derivations, both of the Maclaurin series 

and Taylor series is zero, but the result is correct, and the 

method gives at least an idea , which possibly guided the 

discoverers to their developments. It should be noticed that in 

the procedure we have adopted, almost  new or thoroughly 

new ideas were introduced: 

1) That infinite polynomials  could exist and make sense; 

2) That an infinite  polynomial, which at  a given point had all 

derivatives equal to those of a given function, could 

approximate it even at points very far from the starting point, 

which is a non-intuitive, non-trivial hypothesis.  

 

Ad abundantiam I include  a figure which shows how the terms 

of increasing degree progressively added to the polynomial 

make it to approximate  better and better the original function 

(here f(x) = sin(x) ) closer and closer 

 

 

 

Fig.0, made with Wolfram Mathematica 
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In  two variables the expansion around the point of coordinates  (a, b)  is a bit 

more complicated. 

Proceeding as in the case of one variable, we first of all must have         

  0 , =          

We now add a first degree term and impose that the first derivatives of the 

new polynomial and of the function are equal in the point (a, b).  We should 

just remember that the first degree terms are two,  B(x-a) e C(y-b). We must 

impose that   

                              

Taking the derivatives and evaluating them  in the point (a, b), we have:   

B =  
  

  
 

   
   and C =  

  

  
 

   
 

Which we will soon forget, because, as in the one variable case, we will find 

the “critical points”  of the function precisely by imposing that its first 

derivatives are equal to  0.  

We must now  calculate the second order derivatives of  

                                  … 

In  the point  x = a, y = b.    

Per prima cosa si calcola la derivata  seconda rispetto a x del primo termine, 

che ci dà 2D, da cui: 

     
 

 
 

 

  

  

  
 

   
   

The second derivative of              with respect to y is  2F. Therefore,  

F =
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The only remaining term is             , which is to be calculated in two 

steps, whose order, luckily, is irrelevant.  

The first derivative if the term with respect to x gives  

           

  
            

While the first derivative of the resulting         with respect to y  gives E.  

We set this result to be equal to the second derivative of the function with 

respect to x and y, calculated in the point (a, b):  

 
 

  

  

  
 

   

   

Following this procedure, some find it difficult  to understand why the 

various derivatives of the function must be calculated in the point (a, b). But 

this was precisely the starting program: to create a polynomal , even of 

infinite degree, such that all its derivatives are equal to the derivative of the 

function in the given  point (a, b) . In fact, if the calculate, for example, the 

second derivatives of the polynomial, one sees that they are equal to the 

second derivatives of the function in the point (a,b), because the second 

derivatives of all  higher degree terms of the polynomial contain  terms  (x-a) 

or  (y-b), which become 0 when  x=a  and/or  y =b.  

We thus have the expansion: 

                   
  

  
 

   
        

  

  
 

   
         

 

 
 

 

  

  

  
 

   
     

 )2+        ,    (   )+12         ,   (   )2 … 

There remains  only one more step to be done:  we can remark that  we can 

write, for fairly small increments: x - a =                     , and similarly 

y - b =                    . 

Now, bringing f(a, b) to the left hand side and having set equal to zero  both 

first derivatives to find, as in the one-variable case, the “critical points”, our  

expansion  around a critical point of coordinates (a, b) will be: 
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All derivatives are calculated at x =a, y = b, and therefore are just ordinary 

numbers. 

And we stop here as promised, and do not include in our analysis the higher 

order terms. In most cases they are not necessary. 

 

IV. 

As we said, if we expand our function near a “critical point”, the terms 

containing the first derivatives identify the critical point by being put equal to 

zero.  

For example, for the function z = x2 – y2,  we must put the first derivatives 

equal to zero, thereby obtaining 2x =0 and 2y = 0, that is, that the point (x =a = 

0, y = b = 0), the origin, is the critical point.     

We can now consider f(x,y) as  the equation of a surface in two dimensions, 

and examining the properties of the right hand side we should be able to 

understand the shape of the surface in the neighborhood of the critical point.   

Right, but how to do it? 

 

V.  Quadratic Forms and associated symmetric matrixes. 

In general an expression of the type  

                       

(which can be extended to n variables, provided all terms are of second 

degree)  is called a “quadratic form” and has many theoretical and practical 
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applications.  In our case it is associated to a symmetric matrix, as one can see 

by developing the product 

       
  
  

  
 

 
          

     

     
                    

It must have occurred to Hesse that the right hand side of (1)  is the quadratic 

form resulting  from the product of a symmetric (HESSIAN) MATRIX by a bi-

dimensional  vector        

  
   and by its transposed             (all multiplied 

by ½, a factor which we will henceforth omit). 

With “obvious” notation for the second derivatives (            , we obtain: 

 

         
      

      
    

  
           + 2                

Some confusion inevitably arises when one talks about “Hessian”. Generally 

it means the Hessian matrix (          ), but many beginners, not without 

some reason, think that one is talking about  the Hessian determinant,  

                
      

      
            

  

which so far has not yet come into play.   Its turn will come, though.  

 Let’s leave for a moment the determinant aside. We have 

 

                                      

     
 

 
                                  

which means that if the “quadratic form”, which we have on right-hand side 

is always positive , in whatever direction we move away from the critical 

point of coordinates a and b, that is  whatever are the components      , we 

have that the difference between the new value                  and the 

function at the critical point is positive. In other words,                   is 

always “above” f (a, b), which  is therefore a minimum. 
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On the other hand if the quadratic form on the right is always negative, in 

whatever direction we move from the critical point, we have that the 

difference between the new value                  and the function at the 

critical point is negative. Then                  is always “below” f (a, b), 

which  is therefore a maximum. 

By the same reasoning, if in some direction the quadratic form is negative 

and in other directions is positive, we have a “saddle point”.  

Finally, if  the quadratic form  is equal to zero, we cannot come to any 

conclusion and we have to deepen our analysis, a task we will not enter in 

detail. 

One question which might arise is how to deduce the 

quadratic form from the symmetric matrix and vice 

versa. As long as we are working in two dimensions, 

the answers can be given almost by simple inspection.   

If we move to a higher dimension, the vice versa is still  

easy : one multiplies the matrix on the right by the 

vector column  

 
 
 
 

   and on the left by the transposed 

(row) vector (x,y,z,u…) 

Going from the Quadratic form to the associated 

matrix is as easy. One must only remember that the  

quadratic form is given by 

Q(                   
 
      

and reorder the coefficients. (It helps to remember that 

the matrix is simpler to use if it is symmetric ). 

Example: 

Suppose we want to find  the matrix associated  to the 

quadratic form   
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Q(x,y) =                  

Re-baptising x =         , we can write 

Q(                                       

From which:                           

The matrix is thus 

 
  

   
 , 

which is not symmetric.  However,   -3yx  + 2xy = - xy, 

and one can impartially divide  -1= -0.5 - 0.5, thus 

obtaining  

 
     

     
  

Which gives us back the quadratic form  

Q( x,y) =            . 

 

In fact one can generalize the above example by giving 

the  prescription that  

    = 
 

 
           

If            from the beginning, “tant mieux”, as a 

Frenchman would say. 

VI. 

Thus the question is now, how do we decide the behavior of the term on the 

right of 1b?  One method would be by “brute force”, that is  tracing a 

(reasonably small circle, not to include other critical points) centered  on the  

critical point under exam,  calculating the value of f (x, y) for as many points 
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of the circle as possible and comparing the values so obtained with the value 

of the function at the critical point.  We would then know whether we are 

dealing with a maximum, a minimum or a saddle point (by the way, we 

would also solve the uncertain situation arising when the quadratic form is 

equal to 0).  

The ideal result would be  that of demonstrating  that a quadratic form  can 

easily be shown to have  always a positive, or negative,  value, whatever are 

the directions of the vectors        ,           from the critical point, without 

calculating the values of the quadratic form point by point. 

 

VI. 

Such ideal objective can be achieved and a  little knowledge of the theory of 

eigenvalues will help us to understand the trick.  I shall deal for example sake 

only with 2 x 2 matrices.   One can demonstrate that a symmetric 2 x 2 matrix 

always has real eigenvalues, which are found remembering the foremost 

meaning of eigenvalues and eigenvectors  of a matrix, such as:  

 
  
  

  

If we multiply  a matrix by a vector of components   
 
 , in general we find a different 

vector. However, there are cases in which we find the same vector, at least in 

direction, albeit shortened or lengthened by a factor traditionally called  λ, the 

eigenvalue . Such a vector is called eigenvector. To find it, we must therefore 

solve the simple algebraic system  

 
  
  

   
 
  = λ  

 
  

Which, for a symmetric matrix, becomes: 
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Thus  (x, y) becomes (        that is, the same vector lengthened – or 

shortened – by a factor λ. 

The first grade algebraic system readily becomes:   

(2) 

 
            

             
  

We now have a homogeneous system, and the determinant of the coefficients 

of x, y, must be 0, otherwise we will have only one solution. Such a solution, 

being unique, can only be  the useless  (x = 0, y = 0), which indeed satisfies the 

system. The determinant of the coefficients results in the second degree 

equation:  

                   

Here we see that the discriminant of the equation 

                                 

 is always positive, which guarantees that our 

equation has real roots.  This is due to the symmetry of 

the matrix. The two real roots we will obtain make the 

determinant equal to zero, which is what we want, in 

order  to have non-trivial solutions. 

 

Of the above equation it will be useful to remember 

that: 

             

              

 

 

VII. 
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Having found the two real eigenvalues (        ), we can substitute them in 

the (2), thus obtaining two eigenvectors (   ,      which can be normalized by 

dividing each of  them by             , a product which some call Norm, while 

others call Norm its square. It is just a matter of names. 

 

Although, once the eigenvalues are known, it is not difficult to calculate the 

two  eigenvectors, I have seen many students in difficulty in front of this 

problem.   Yet, starting from any of the two equations (it does not matter 

which one, because, as the determinant of the coefficient, once the 

eigenvalues are inserted,  is zero, they are equivalent)  we have that  

 

            

 

The equation is satisfied, for example, by taking  

  
 

 
     

 

   
  

It then follows: 

     
 

    
            

 

    
    

 

Whose internal product is given by 

 

                                             

 

Using the formulas for        and         mentioned above:: 

 

=                            

 

Thus the two eigenvectors  can be taken as a new orthonormal basis of the 

space in 2 dimensions.  

Stop! The lazy but fussy student might say. The 

orthogonality is OK, but how can we be sure of the 
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normality?  The answer is that we ourselves fix the 

normality by dividing the vector by its norm, or its 

square root, according to the convention we decide to 

follow), in such a way that, by multiplying it by itself 

or – better -  by its transposed, we obtain 1. 

 

Thus, to normalize the vector    
  

   we perform the 

internal product: N = (      )    
  

     =     
    

 ,  we 

take the square root and divide the original vector by 

it. 

We thus obtain the normalized vector  

 
  

  
   

 

    
    

 
 
  

  
  

Which, multiplied by its transposed vector 

          
 

    
    

 
(      ) 

Produces :  

 

    
    

 
(      ) 

 

    
    

 
   
  

     
   

    
 

   
    

    

 

In other words, now we have a normalized vector. 

From now on we will assume in general that our 

eigenvectors are normalized.  

 

The advantage is that using as a new basis the eifgenvectors 

 (i) A symmetric  2 x 2  matrix   M  can assume a diagonal form (the two diagonal 

terms being the (real) eigenvalues). It is easy to show why. 

We have that    

M       =         

M       =         

And therefore, multipliying the first equation by      , on the left 
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                =                

 

The left hand side is      , the new (1,1) element of the matrix M in the new 

basis. On the right hand side we have  

 

                             

 

because     is just a number, and can be put before or after the vector it 

multiplies. Besides,      is normalized, and therefore we have               

 

      M      =      =    

 

As the eigenvectors are orthogonal, besides being normalized,  we have also: 

 

      M            =                = 0 

 

 Operating likewise on 

M       =         

 

with                on the left, we finally get the diagonal form in the new basis: 

 

M’ =  
   
   

  

 

If you look back with “different eyes”, you see that we 

have performed a piecemeal  transformation of a 

Matrix, which, putting everything together, is: 
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where the boxes are the two-component new basis 

vectors, in green the vectors, in red their transposed or 

“dual” vectors.    

 

It is perhaps worth mentioning that the basis vectors 

we imply (generally without realizing it)   while 

writing the elements of a generic  2x2 matrix M are  

    
 

 
         

 

 
    

 

For example, by multiplying  

(1, 0)  
  
  

   
 
   = (1,0)   

 
                

 

 

 But now we came to the main point of the discussion: 

(ii)  All vectors in two dimensions can be expressed in terms of the two eigenvectors 

since the two eigenvectors form an orthonormal basis.  We just have to  

expand the unit vectors of the old basis,    and     in terms of the new basis 

   and     , as follows: 

 

   =                                    

   =                                    

 

 

Thus, if we select our displacement vector as                    , it becomes:  

 

      [                               ]                                    ]    

 

or also   

                                                                            =            , 

and one can see by inspection that                are indeed the components of 

   , along the new orthonormal basis                 
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But a diagonal matrix allows us to write the quadratic form in the so-called 

“canonical form”.   

In fact,  we go from the old bi-dimensional  system in which: 

1. the basis were the unit vectors         

2. the (symmetric) matrix associated to the quadratic was M, resulting in  

3. …the associated quadratic form  Q(M) =             

to the new system, in which  

1. the basis are the unit vectors                

2. the symmetric matrix associated to the quadratic is   S’ =  
   
   

 ,  

3. the associated quadratic form  Q(M’) =  (          
   
   

    
  

  = 

     
       

  

 

Thus,  the associated quadratic form has assumed  the CANONICAL FORM: 

(3)                Q(M’)=     
       

  . 

 

 

VIII. 

 

In the case under study, therefore, as both   
   and   

  are positive numbers, 

the most important feature, which is called  the “signature” of the quadratic 

form, depends on the eigenvalues of the Hessian matrix: the quadratic form 

associated to H (the Hessian),  Q(H), will always have a positive value 

(condition for a minimum of the surface)  if both eigenvalues will be positive .  

It will be always negative if both eigenvalues  will be  negative  (condition for 

a maximum of the surface). In both cases their product, the value of the 

determinant, will be positive.  But this means that  it will be sufficient to 

know the sign of one eigenvalue to know whether we are in a minimum or 

maximum condition, since the other eigenvalue must have the same sign. 

In these cases we say that the quadratic form is definite, positive or negative, 

with the consequences we already mentioned on f (a, b) being a minimum or 
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a maximum. If one eigenvalue is zero, the quadratic becomes “semidefinite”, 

either positive or negative, depending on the sign of the other eigenvalue.  

 

 

IX. 

 

But what if the eigenvalues have a different sign?  According to 1b, page 7, 

we have: 

    
 

 
             

Which, reduced to canonical form (3), page 15, can be rewritten as: 

 

    
 

 
             

Where        are just the translation of         in the new coordinate system. 

 

Therefore, without loss of generality,  if the eigenvalues have a different sign, 

we can study the function: 

            
 -      

  

Where we have an irrelevant factor 2. 

For z = 0, that is on the plane through the critical point, we have two straight 

lines through the origin of the plane (U, V), a common feature when the 

origin is a saddle point ; for                 we have a hyperbola and our 

surface begins to shape up.  For z   0 we still have a hyperbola, but 

orthogonally oriented with respect to the first one.  

Finally, we can study the cases U = 0  and W= 0.  In the first case  we have the 

curve z = -      
 , a convex parabola; in the second case we have  q =      

  , 

a concave parabola. (See fig.1). 

 

Three Examples. 

 

A. The quadratic form    z =  x2 – y2.  The critical point is the origin, because  
  

  
          

  

  
  = 2y = 0  from which x = y = 0.  But, now, we must be 
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smart. The quadratic is already in canonical form, and we can easily write the 

Hessian determinant as:  

 

 
  
   

      

 

The two eigenvalue equations are  

 

 
         

          
  

 

The determinant is                   which gives the two roots, which 

we could have guessed just from writing down the determinant. It is equally 

simple to see that the eigenvectors are oriented along the orthogonal axes  y = 

0 and x =  0 The determinant is negative and therefore we are dealing with a 

saddle point. 

How is the saddle oriented?  

If we take the function z(x , y) at the value zero, that is we consider the 

function z =  x2 – y2 = 0, we find that z splits into two straight lines through the 

origin   (x + y)(x - y) = 0, or  y= x and y= -x, at 45° with respect to the axes of 

coordinates (in green in the diagrams in Fig.1).   

We just have to see what happens along the old orthogonal axes: for example 

let’s take y. In this case we find that along the y axis (that is for  x = 0) the 

values are   z =  – y2, a convex parabola, everywhere negative (except in the 

origin). Along the other axis, on the other hand, we will have a concave 

parabola, everywhere positive (except in the origin).  We can thus reconstruct 

the saddle: in the blue sectors we are below the origin, in the red sectors we 

are above the origin. In the second diagram, the  two parabolae are drawn in 

purple color, the two  hyperbolae in red and blue. 
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Fig.1 (partly made using the Wolfram-Mathematica language). 

 

B. The quadratic form   z =               . 

Such a form is very interesting, because it appears in various problems. I 

think it was Poincaré, who said “Mathematics is the art of giving the same 

name to different things. As a consequence (but Poincaré did not say it) the 

same “solution method” can be applied to different “problems”. But the 

sentence makes sense also by exchanging the words  “solution methods “ 

with the word “problems”: Mathematics is therefore also the art to solve the 

same “problem” with different “solution methods”. 

The quadratic form we want to study will throw some light, I hope, also on 

the meaning of eigenvectors and eigenvalues. Let’s examine two problems in 

which the form appears. 

 

(1)  First problem: small oscillations of a system consisint of two mass 

points connected by elastic strings.  

 

Let’s consider the oscillating system (Fig.2) , simplified to the utmost, 

consisting of two equal point masses, which, at rest, stand on a straight line at 

points situated at the same distance  1 between themselves and between 
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themselves and two fixed extremes of the string. The elastic force constants 

are assumed to be equal. Let’s also make the hypothesis  that the vertical 

displacements from the horizontal line to the ponts B and C  (i.e. x and y)  are 

uniquely vertical and small with respect to to 1.  

 
Fig.2 

 

What is the potential function V(x, y) ? 

In course lessons and  textbooks  the potential is normally obtained by the 

force attributed to Hooke, which I transcribe here in its general form: 

 

        

By calculating the work done by the force to produce a lengthening x, one 

obtains the elastic potential : 

   
 

 
    

 

I must say that I don’t quite like this method, even if it is frequently used. 

Landau himself, in his book “Mechanics” deduces (so to speak) Lagrange’s 

Equation by introducing an abstract potential function which, added to the 

free particle Lagrangian (which is nothing but the kinetic energy of the 

particle) will allow us to obtain, for example, Newton’s equations. Nothing 

bad in all this, but if this abstract potential function is derived from the 

Newtonian force, I am left with the impression that “the dog is (at least 

partially) eating its tail”. In other words, in my opinion we should be able to 

construct the lagrangian  L=T-V directly, without invoking Newtonian forces. 

V should be given either directly by the experiment or  by some independent 
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reasoning (indeed, in elementary particle physics there are no other ways). 

Unfortunately I have against me Hooke himself,who wrote (1678)  “Ut tensio 

sic vis”, that is:  

        

 

An illuminating  observation I found (W.W. Sawyer, “A Path to Modern 

Mathematics” – golden booklet!)  is that the potential energy resides in the 

total lengthening of the elastic string to go from the rest position to the 

configuration given, for example,  in Fig.2. If one stretches the elastic string, 

the only results of the work which has been done is the lengthening of the 

same , and therefore we have no better choice, because of a “principle of 

sufficient reason”, (dear to the Eighteenth century mathematicians), than to 

declare that the elastic potential of the stretched string resides in its 

lengthening form the rest position.  The elastic force tents to decrease the 

length of the string, which has been lengthened by vertically displacing the 

two masses, to bring it back to the initial length (in our case L=3).   The total 

length after stretching is: 

i) For the segment AB:      , which for  x small reduces (series expansion!) 

to 

      
 

 
    

ii) For the segment  BC:           , which for small displacements 

reduces to :   

      
 

 
         

 

 
    

 

 
        

iii) For the segment CD:      , which for small displacements reduces to :   

      
 

 
    

 

The total lengthening  (to which the elastic potential will be linked by some 

constant measured in suitable units)  

                            . 
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(2) Second problem: motion of a point-mass which slides without friction in 

a bowl under the effect of gravity. 

 

The shape of the bowl is selected by us. Following Sawyer, we can proceed as 

follows: 

(1)  we define  a function z (x,y), such as:  

                 

(2)  we draw two orthogonal axes on the plane, and then, at  each point (x,y) 

raise a straight line segment of height z perpendicular to the plane. 

(3) we extend a flexible surface which touches all points, as many as possible, 

which we have thus constructed.  

If we do things well, with a suitable number of points, we obtain a smooth 

surface, called “parabolic ellipsoid” whose principal axes  (pink and light 

blue in Fig.3)  are oriented at 45° with respect to the orthogonal axes (x,y) as 

their projection on the plane shows. Note the two curves (in fact parabolas) 

POQ (red and pink) and MON (blue), which are also projected on the 

principal axes of the ellipsoids. Such parabolas are also oriented along the 

lines  of maximum and minimum slope of the surface.  

 

 
Fig.3 
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If we cut the parabolic ellipsoid  at a height z, and plot the contour curves of 

the bowl, we have the following figure: 

 
Fig.4 

 

Let’s suppose we let go a heavy point from any point, such as H. The particle 

will (frictionless) slide along the maximum slope lines , which, as we know 

from a previous essays on the gradient on this same site  

(http://dainoequinoziale.it/sassolini/2017/07/04/normalegradiente.html) 

 are at any point perpendicular to the contour line going through that point 

(the contour lines in figure 4 are all ellipses traced in different colors ).  If the 

heavy particle starts from H, its trajectory is quite complex, as ti must be 

perpendicular to the contour lines at each point. The same can be said of the 

trajectories starting from points G, J, L. In the absence of friction, the heavy 

particle will raise on the other side of the bowl at the same height  of the 

starting point. It will then come back performing a complicated oscillatory 

motion, but in general will not go back to the starting point  H.  

 

WE can see, however, that there are particularly simple two types of motion, 

along the line MON and along the line POQ. These two trajectories, which are 

projected onto two straight line segments on the plane (x,y)  are at each point 

perpendicular to the contour curves, and therefore the projections of the 

motions along them will be two harmonic oscillations on a straight line.  

http://dainoequinoziale.it/sassolini/2017/07/04/normalegradiente.html
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However, we should not expect two equal frequencies, because the MON 

trajectory is  steeper, and therefore faster to be completed than the trajectory 

along POQ. The period of oscillation along MON is therefore smaller (and the 

frequency higher) than along POQ.  

 

The usefulness of eigenvalues and eigenvectors is that any oscillatory motion in the 

ellipsoidal bowl we are considering, no matter how complicated, can be decomposed 

into two rectilinear oscillatory motions of suitable frequency. Such two particularly 

simple motions are called the “Normal Modes” of the oscillating system, and 

behave as the two orthonormal vectors of a bi-dimensional system, in the 

sense that any othe vector of the system can be expressed in terms of its 

components along such basis vectors.  

 

The mathematics we have studied should confirm our qualitative remarks.  

 

To see it, we must diagonalize the matrix associated to our quadratic form, 

find the eigenvalues (which, as we shall see, are linked to the frequencies), 

and the eigenvectors (which are linked to the nature of the two simplest 

motions, or Normal Modes), which, as we have now said and repeated, will 

be used to describe any more complicated motion. 

 

The symmetric matrix which originates our quadratic form is: 

 

 
     

     
  

 

(and this can be demonstrated readily  if we perform the multiplication: 

 

        
     

     
  

 

 
  

 

The eigenvalues can be readily computed by assigning the right values to the 

coefficients of the determinant given in (2) : 
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Easy calculations show that  

 

                
 

  
 
   

 
  

                
 

  
 
   

  
  

We thus see that the larger eigenvalue, which, as we shall see, corresponds to 

the highest frequency, is oriented  from North-West to South-East, with a 

slope of 45°  (along the MON trajectory), and the smaller eigenvalue from 

North-East to South-West, the POK trajectory, as announced. 

 

 
Fig.5 

 

From the values of the components (x,y) of the eigenvectors, we see that they 

are equal for       and opposite for    .     

 

If now we abandon for a moment the elliptical bowl, and go back to the 

oscillating system of  Fig.2,  where x, y are not the coordinates of a single 

point , but the ordinates of two different points, the Mathematics of the two 

systems being the same, we see that the two eigenvectors, or Normal Modes 
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of the oscillations, have ordinates x, y, which are equal and opposite  in the 

case of the larger eigenvalue, and equal in the case of the smaller eigenvalue. 

 
Fig.6 

 

One should not be astonished because the “red” mode has an oscillation 

frequently smaller that the “blue” mode.  In fact, in the blue mode, the two 

equal mass points for equal |x| and |y|, (excepting the case in which the two 

masses lie on the rest line)  are always on the opposite sides of the rest line, 

which means that the elastic string joining them is longer, that is more 

stretched, and the two masses are subjected to greater elastic force, which 

produces a greater oscillation frequency. 

 

Let’s go back to the bowl.  To have a general view of the behavior of the 

oscillations of a heavy particle, we only need to remember how do we arrive 

at the equations of motion of two coupled oscillators (which, as we have seen 

from a mathematical point of view are the same problem).  

For two coupled oscillators we inevitably arrive at the two equations of 

motion: 
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To solve these equation one is usually given  the vague statement (which I 

discussed already in 

http://dainoequinoziale.it/resources/sassolini/leprimequazioni.pdf) that in a 

linear, second order system with constant coefficients we can try to find a 

solution by setting: 

 

                      

 

A priori, as I already said in the quoted essay, no reason is given to do so, but 

at least we know that the method works.  With this position we obtain:  

 
           

   

            
  

  

 

Which, written in different form, is none other than: 

 
         
          

  

 

In which the eigenvalues we shall find are the squares of the frequencies. The 

problem,  which the minus sign creates can be avoided, as we know, by using 

trigonometric functions, if we do not like to use complex numbers.  

 

The motion of a point R(u,v) whose  u- component oscillates along one of the  

ellipsis axes, while the v-component oscillates along the other axis, results 

from the following construction:  

 

http://dainoequinoziale.it/resources/sassolini/leprimequazioni.pdf
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Fig.7 

 

The coordinates of R, namely Ru  and  Rv ,   measured on the oblique axes 

U and v, with oscillation amplitudes equal to (Mu – N u   and   Pv - Qv ), 

oscillate with frequencies equal to the square roots of the found eigenvalues, 

ignoring the minus sign. 

The trajectory of R can assume rather complicated figures, which are named 

“Lissajous curves (or figures)”. 

To give an example of Lissajous curves , using the Wolfram Mathematica 

language, I hae drawn a rough example of hat happen in our case, when the 

frequencies  assume the values of        (with semiaxis  0.5 ) and       (with 

semiaxis 1).  As the ratio of the two frequencies is not a rational number, the 

trajectory will never closed. In fact, little by little it wil fill the rectangle of 

dimensions 2 x 1, in the sense that point R sooner or later will pass infinitely 

close to any point of the rectangle. 

Using the formula  

 

ParametricPlot[{Sin[Sqrt[0.5]t+ Pi/2.] ,0.5 Sin[ Sqrt[1.5]t+ Pi/2.]}, {t, 0,20}] 

 

in  20 time units, starting from K; one obtains the small portion of the  

trajectory: 
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Fig.8 

 

 

C. The quadratic form  z =               . 

The associated symmetric matrix is: 

 
  
  

  

whose determinant is Zero, as the matrix has two equal rows (and two 

columns) – although in this case doing the calculation by heart  is faster. 

 

It is known that the determinant changes sign if two 

rows are exchanged, and therefore, if there are two 

equal rows the determinant should change sign and at 

the same time keep the same value, once they are 

exchanged. Therefore it must have zero value.  
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The eigenvalues are     2, corresponding to the eigenvector (1,1),  and    

 0, corresponding to the eigenvector  (-1,1).  Note that the eigenvectors are not 

normalized, which in this case is unimportant. The interested reader can try 

to rnormalize them. The two eigenvectors are  manifestly orthogonal (and 

their  internal product proves it).   The eigenvectors once more point to the 

two  lines at 45 degrees with respect to the axes x and y.  If we take the line y 

= x, we find that along such a line, z = 4 x2, that is, we have a parabola. If we 

take x = -y, we get z=0, a straight line.  This explains why we have an 

indefinite case: the line z = 0 along the straight line  y = - x  does not allow  the 

origin to be either a minimum or a saddle point, as fig.2 shows. 

 

 
Fig.2 (made using the Wolfram-Mathematica language) 

 

 

Contrary to what one could believe following  careless reasoning, therefore, 

there may exist points where the derivatives exist, but, as one can see from 

Fig.2,  we cannot have neither a maximum nor a minimum nor a saddle 

point. Ant the situation might not get better even examining the higher order 

terms of the  Taylor series expansion of suitable functions. In any case, the 

anomaly we have shown is not the only anomaly which can arise of the 

Hessian Determinant = 0. 
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X. 

 

And now I hope you are ready for a surprise. Undoubtedly, the  Hessian is an 

interesting  animal in the mathematical zoo, with many applications which I 

will list in the Conclusions, but  it  is not the only mathematical instrument  

absolutely necessary to reduce a quadratic form to its canonical form. The 

demonstration, which follows,  can be extended to n variables, but becomes 

especially simple, inevitably, in two dimensions.   

 

Let’s consider the quadratic form  

 

Q =               

 

Whose associated matrix is: 

 

 
  
  

  

 

Let’s work now on  the portion of Q which contains  x. It is:            . 

However,  for a   : 

  

 
                    

  

 
    

And therefore :    

   
    

 
           

  

 
             

    

 
               

  

 
       

 

By putting  

  
 

 
 

           

       
  

 
  

Y = y 

One has: 
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That is, the quadratic in canonical form. 

 

Our original quadratic form we intended to study was: 

 
  
  

     
      

      
  

Which allows us to assign explicit values to the coefficients and to the 

variables):   

A =
 

   
,    B=  

           
 

   
 ,   X = (x                     

 

The Quadratic form becomes:  

       
 

   
                   

           
 

   
    

 

Clearly, the coefficient B is the Hessian determinant divided by      We see 

once more that: 

1. If D>0 and     > 0, Q is larger than 0, and we have a minimum of f(x,y); 

2. If D>0 and    <  0,  Q is smaller than 0  and we have a maximum. 

 

For the case D < 0, we must examine the whole quadratic form. 

We know that its Hessian is negative.  If     is negative, we have that the first 

term is negative and the second positive; if     is positive  we have the 

opposite.  

1 Case:     > 0. 

Putting Y (=y)= 0, one gets that along the x axis we have the positive parabola  

Q(x) =     x2, while, along the y axis , putting X = 0, we have a negative 

parabola, because such is the sign of the coefficient of Y2. Note that  setting X 

=0 means that :  
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Which can be done, as     is not zero. 

 

2 Case:    <  0 

Proceeding as in the previous case, it is immediate to verify that  the signs of 

the two parabolas are exchanged.  

 

Thus, in both cases we have a saddle-point, as Fig.3 shows for     > 0 , 

considering the two  orthogonal  parabolas of opposite sign, going through  

the critical point (in this case the origin): 

 

 
Fig.3 (1 Caso:     > 0) 

 

Adapted from: 

https://upload.wikimedia.org/wikipedia/commons/1/1e/Saddle_point.svg 

By Nicoguaro (Own work) [CC BY 3.0 (http://creativecommons.org/licenses/by/3.0)], via 

Wikimedia Commons 

 

 

This method, in two variables, is immediately understandable, and brings to 

the same conclusions as the use of the Hessian. More important,  the fact that 

the numerator of  B is indeed the Hessian determinant, gave me  the 

https://upload.wikimedia.org/wikipedia/commons/1/1e/Saddle_point.svg
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suspicion that  Hesse started from  here to develop his theory: in a sense the 

Hessian fell into his hands from heaven, while he was analyzing general 

quadratic forms, and on its basis he developed his theory regarding bi-

dimensional surfaces. 

 

 

 

 

CONCLUSIONS. 

 

The Hessian (be it the matrix or the determinant) is stuff for students who 

have already gone beyond the first steps in Mathematics.  A bit of wordiness, 

on my part, deriving  from my experience with students and their most 

common doubts, together with a fairly large font, have made a short essay a 

monster of 35  pages.  The question which always arises in the mind of 

students  is “Is it worth it?”. 

 

Well, quadratic forms enter at least in the following fields:  

1.    Number theory, 

2.   linear algebra,  

2. group theory(orthogonal group),  

3. differential geometry (Riemannian metric, in particular the “second 

fundamental form”),  

4. differential topology (intersection forms of four-manifolds; Morse 

theory), 

5. Lie theory (the Killing form), 

6. Catastrophe theory…. 

If  not a single one of these fields is of your interest, then you should think 

that Math is about such (and similar) objects, and draw your conclusions.  
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